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Abstract

As a way of addressing privacy concerns, generative adversarial networks (GANS)
are specifically designed to produce synthetic data - artificially generated data
which possess the statistical properties of the original dataset. These algorithms
have recently become popular due to their effectiveness and high accuracy in
learning the distribution of the original data. However, the viability of using
GAN-produced synthetic data in place of the original data to develop various types
of mathematical models is not well explored. In this paper, we investigate the
potential differences that may arise when applying complex models to a purely
synthetic dataset. Specifically, applying graphical structure learning methods tests
the depth of the statistical similarity between synthetic data produced by GANs
and the original data. We first apply simple stepwise forward model selection, then
birth-death MCMC for Gaussian graphical models, using both the synthetic and
original data. Comparing results, we conclude that although GANs may produce
a synthetic dataset that statistically resembles the original dataset at first glance,
results from applying graphical structure learning algorithms on the two datasets
are in fact substantially different.

1 Introduction

With a growing need to protect sensitive data, the importance of developing viable synthetic datasets
becomes more and more apparent. In recent years, several methods [6], such as synthetic minority
over-sampling [1], differentially private data synthesizer [3], and most recently the generative
adversarial network [2], have been introduced to solve such a problem. Though such methods are
proven to excel at producing data that is nearly impossible to distinguish from the original data at
first glance, the effectiveness of using synthetic data in place of the original data to fit mathematical
models is uncertain.

Theoretically, fitting models from synthetic data should yield similar, if not identical, results to the
original data as they both should possess the same statistical properties. In this paper, we evaluate
this claim by first creating synthetic data using a generative adversarial network and then applying
graphical model selection methods on both the synthetic and original datasets. The focus will be on
discovering whether synthetic data and original data result in similar graphical model selection, while
generative adversarial networks’ efficiency in privatizing data is left as future work.

The outline of this paper is as follows. In section 2, we introduce the diagnostic breast cancer dataset.
In section 3, we introduce generative adversarial networks as a method of creating synthetic data. In
section 4, we compare the results from two graph structure learning models on both the synthetic and
original data. In section 5, we conclude our findings and delve into several possibilities for future
work.
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Figure 1: GAN Mechanism depicting opposing generator and discriminator networks

2 Data Set

For our analysis, we used the Wisconsin diagnostic breast cancer dataset from the UCI Machine
Learning repository [7]. This dataset is comprised of 699 observations of cell nuclei collected
from a fine needle aspiration biopsy of breast masses. Each observation has 13 variables recorded
including a unique ID number, diagnosis, and ten additional physical features including radius,
texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and fractal
dimension. Approximately 60% of samples were diagnosed benign, and the remainder were diagnosed
malignant. This data set was chosen to be used as a point of comparison since there are strong
relationships between the physical features of the nuclei and ultimate diagnosis.

3 Generating Private Data

For generating synthetic data, we chose the generative adversarial network, due to its rapidly growing
popularity, relatively short computation times, and ability to handle high-dimensional data.

3.1 Generative Adversarial Networks

Generative adversarial networks (GANSs) are a family of unsupervised machine learning algorithms,
composed of two neural networks that compete with each other in a zero-sum game (Figure 1) [2].
The generator network, G(z), takes random noise and attempts to transform it into fake data that
is indistinguishable from the original input data. The discriminator network, D(z), attempts to
discriminate between the generated data and the original data. Over time, both networks are gradually
learning and improving.

The discriminator outputs a logit prediction, {0, 1} for a given X that the generated data is either real
or fake. Let D(x) represent the probability that x came from the data distribution pg,¢,, rather than
from pg, the distribution of synthetic samples from the generator. The GAN trains the discriminator
to maximize the probability of assigning the correct prediction to both synthetic and the original
data. The generator is trained to transform random noise, z, into synthetic data, represented by the
function X = G(z) where X are the new generated synthetic data. Thus, the generator minimizes
log(1 — D(G(z)).

Now, we can define the objective function:

MG B, 09 D()] + Bz, [log(1 — D(2)]
= E.[logD(z)] 4+ E.[log(1 — D(G(2))]
After sufficient iterations of this minimax game, the distribution of synthetic samples p, from the

generator should be adequately close to the distribution of the true data, pgqtq-

Though GANs and Boltzmann machines are both generative models based on deep learning and
neural networks, they have very different mechanisms. A Boltzmann machine is a symmetrically



Radius Texture Perimeter

Dansity
03
L

oo

Density
00 02 04
L1
Density
00 02 04
L1

Density
00 03 0B
L

Density
00 02 04
>

Density
00 03
I

Density
00 03 06
IERR RN

Density
00 03 0B
NN

Density
00 02 04
?

Figure 2: Empirical densities of synthetic data (red) compared to original data (black)

connected (undirected) network, allowing for both forward and backward connections between binary
hidden and visible units. The configuration of the network defines its energy function. A GAN is
more of an architecture, consisting of two neural networks whose purposes directly oppose each
other. Furthermore, the generator is a directed network and so only allows for forward (not backward)
connections when producing synthetic samples. The same applies to the discriminator. Thus, we can
see that GANs and Boltzmann machines are very different.

3.2 Synthetic vs. Original Data

In applying the GAN to the breast cancer data set, we first standardized the data, then we implemented
the algorithm in Tensorflow. We chose a Gaussian prior, N (0, 6), as the random noise for the generator
to learn the distribution of the original data, following the observed normality of the breast cancer
data. The generator was constructed with two hidden layers (stages between the input and output
which take the weighted input and transform it through an activation function to produce a viable
output), each with 16 nodes (nodes simulate the behavior of neurons by connecting directly to an
input variable and contributes to the output variable). The discriminator was constructed with three
hidden layers, each with 16 nodes.

After 10,000 iterations, the synthetic and original data were difficult to differentiate from each
other. For example, the empirical densities of the synthetic and original data were similar, with few
exceptions (Figure 2). The densities of synthetic data occasionally showed higher peaks, such as in
the case of smoothness and compactness. The synthetic data also introduced additional local maxima,
as in the case of concavity.

It is important to note that the GAN is a random process; further simulations will produce different
(albeit similar) results. However, after running the GAN with the same hyperparameters multiple
times, we obtained results that were consistent with our original simulation.

4 Comparison of Graph Models

In order to evaluate the synthetic data’s performance in maintaining the structure and properties of the
original data, we ran stepwise forward model selection and a Bayesian method, birth-death Markov
Chain Monte Carlo for Gaussian graphical models.
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Figure 3: Best decomposable graphs for synthetic and real data, addition of edges in green and deletion of edges
in red

4.1 Decomposable Graphs

Using the method from lecture, we ran stepwise forward model selection on both the synthetic and
original data sets. As shown in Figure 3, the synthetic data added six edges that were not present in
the model of the original data and lost four edges that were present in the original data. With how
few variables are present in the dataset, the synthetic data performed rather poorly in producing a
comparable model to the original data.

4.2 Bayesian Structural Learning

After running stepwise forward model selection, we aimed to validate the results by applying a more
complex model to both datasets. For this part, we chose to implement birth-death Markov Chain
Monte Carlo (BDMCMC) [5]. A traditional MCMC method samples from a desired posterior density
by constructing a Markov chain that has that density as its stationary distribution. After sufficient
iterations, the MCMC converges to the desired posterior.

The birth-death MCMC approach, based on a continuous time Markov process, is an alternative
to traditional MCMC. Transitions to a larger dimension (adding edges) is a birth process, while
transitions to a smaller dimension (deleting edges) is a death process. Furthermore, the time between
jumps to a higher or lower dimension is modeled by a Poisson random variable. The relative rates at
which births and deaths occur determines the stationary distribution of the process.

At base, a zero-mean Gaussian graphical model is defined with respect to graph G:
Mg = {Ny(0,Q7") | Q € Ps}

where Pg is the set of all valid positive-definite precision matrices. Furthermore, a G-Wishart
conjugate prior is placed on precision matrix €2, with density

1
p(Q| G) = I (b, D)~Q| =2 2exp {—2”(1?9)} Lioers)

where I is the normalizing constant, and b and D are parameters of the density. Finally, a truncated
Poisson prior is placed on the graph itself:

AIEl
Py(G) ox 151 VG =(V,E)eg
where |E| is the size of the graph. The BDMCMC algorithm is as follows. For S iterations,
given graph G = (V| E), calculate the birth and death rates separately, determine the waiting
time conditional on these rates, simulate the type of jump (higher or lower dimension), and finally
conditional on the type of jump, sample from the new precision matrix.

After applying the BDMCMC method to both our generated synthetic data and the original data, the
differing results became apparent (Figure 4). The graph produced by the synthetic data is much more
dense (containing 27% of all possible edges) than the graph produced by the original data (containing
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Figure 4: Graph structure learning using birth-death MCMC with both synthetic and real data, addition of edges
in green and deletion of edges in red

only 20% of all possible edges). The synthetic data introduced 8 additional edges, while deleting only
5. This might suggest that the GAN introduced new hidden correlations between certain variables,
but the near-identical similarity between the correlation matrices of the synthetic and original data
suggests otherwise. All in all, since the synthetic data produced a very different graph than the
original data, suggesting that generated data from a GAN may not be suitable for training some types
of models.

5 Conclusions and Future Work

Future work could involve comparing other methods such as graphical lasso, however given the poor
performance of GANSs in maintaining the model structure as the original data, we do not expect to see
more favorable results from graphical lasso. In evaluating GANS as a potential way of privatizing
data, we left checking its success in privatizing the data to future work, however since the synthetic
data does not result in a similar model as the real data, this future work is unnecessary. However, the
quality of the synthetic data produced may be improved, either by tuning various hyperparameters
in the GAN, or using an alternative method to make synthetic data. Training a GAN is notoriously
difficult, and work adjusting the parameters might improve the performance of GANs in replicating
the model structure of the original data.
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